Saturday, 17 January 2026

A TRILOBITE'S LAST MEAL REVEALED

Orygmaspis (Parabolinoides) contracta with gut structure
This specimen lovely chocolate brown trilobite specimen is Orygmaspis (Parabolinoides) contracta — one of the most exciting trilobites to come out of the McKay Group in the East Kootenay Region of British Columbia, Canada.

And what is most exciting about this specimen is that there is clear preservation of some of the gut structures preserving this trilobite's last meal.

Documentation of non- or weakly biomineralizing animals that lived during the Furongian is essential for a comprehensive understanding of the diversification of metazoans during the early Palaeozoic. 

Biomineralization, biologically controlled mineralization, occurs when crystal morphology, growth, composition, and location is completely controlled by the cellular processes of a specific organism. Examples include the shells of invertebrates, such as molluscs and brachiopods. The soft bits of those same animals tend to rot or be scavenged long before mineralization or fossilization can occur — hence, we find less of them.

So, not surprisingly, the fossil record of soft-bodied metazoans is particularly scarce for this critical time interval. To date, the fossils we do have are relatively rare and scattered at a dozen or so localities worldwide. 

Location and stratigraphy of the Fossil Locality
This is one of the reasons that the soft gut structures from this Orygmaspis contracta trilobite are particularly exciting. 

This specimen was found in Upper Cambrian exposures in the Clay Creek section at the top of the left fork of the ravine below Tanglefoot Mountain, 20 km northeast of Fort Steele. 

It was the keen eyes of Chris Jenkins who noticed the interesting structures worthy of exploration.

Lerosey-Aubril along with colleagues, Patterson, Gibb and Chatterton, published a great study on this trilobite in Gondwana Research, February 2017. 

Their work looked at this new occurrence of exceptional preservation in Furongian (Jiangshanian) strata of the McKay Group near Cranbrook, British Columbia, Canada. Their study followed up on the work of Chatterton et al. studying trilobites with phosphatised guts in this same 10-m-thick interval. 

Lerosey-Aubril et al.'s paper looked at two stratigraphically higher horizons with soft-tissue preservation. One yielded a ctenophore and an aglaspidid arthropod, the other a trilobite with a phosphatised gut belonging to a different species than the previously described specimens. 

Undetermined ctenophore
The ctenophore represents the first Furongian record of the phylum and the first reported occurrence of Burgess Shale-type preservation in the upper Cambrian of Laurentia. 

The aglaspidid belongs to a new species of Glypharthrus, and is atypical in having twelve trunk tergites and an anteriorly narrow ‘tailspine’. These features suggest that the tailspine of aglaspidids evolved from the fusion of a twelfth trunk segment with the telson. 

They also confirm the vicissicaudatan affinities of these extinct arthropods. Compositional analyses suggest that aglaspidid cuticle was essentially organic with a thin biomineralised (apatite) outer layer. 

Macro imagery of the trilobite reveals previously unknown gut features — medial fusion of digestive glands — possibly related to enhanced capabilities for digestion, storage, or the assimilation of food. 

These new fossils show that conditions conducive to soft-tissue preservation repeatedly developed in the outer shelf environment represented by the Furongian strata near Cranbrook. Future exploration of the c. 600-m-thick, mudstone-dominated upper part of the section is ongoing by Chris New, Chris Jenkins and Don Askey. There work and collaboration will likely result in more continued discoveries of exceptional fossils.

Glypharthrus magnoculus sp.
The specimen you see here was expertly prepped by Don Askew of Cranbrook, British Columbia. It now resides in collections at the Royal BC Museum.

Photo One: Orygmaspis (Parabolinoides) contracta (Trilobita) from the Jiangshanian (Furongian) part of the McKay Group, Clay Creek section, near Cranbrook, British Columbia, Canada. A–D, specimen RBCM.EH2016.031.0001.001, complete dorsal exoskeleton preserved dorsum-down and showing ventral features, such as the in situ hypostome and phosphatised digestive structures. 

A, general view, specimen immersed under ethanol; B, detail of the digestive structures, specimen under ethanol; C, same as B, electron micrograph; D, same as B and C, interpretative drawing with digestive tract in blue-purple and digestive glands in pink. 

Abbreviations: Dc 1 and 2, cephalic digestive glands 1 and 2, Dt1 and 5, thoracic digestive glands 1 and 5, hyp, hypostome, L2, glabellar lobe 2, LO, occipital lobe, T1 and 5, thoracic segments 1 and 5. Scale bars represent 2 mm (A) and 1 mm (B–D). For interpretation of the references to the colours in this figure legend, you'll want to read the full article in the link below. 

Photo Two:  Undetermined ctenophore from the Jiangshanian (Furongian) part of the McKay Group, Clay Creek section, near Cranbrook, British Columbia, Canada. A, B, specimen UA 14333, flattened body fragment with oral-aboral axis oriented parallel to bedding; specimen photographed immersed under dilute ethanol with presumed oral region facing to the bottom. A, general view. B, detailed view showing comb rows and ctene. Scale bars represent 1 cm (A) and 5 mm (B). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)  

Photo Three: Glypharthrus magnoculus sp. nov. from the Jiangshanian (Furongian) part of the McKay Group, Clay Creek section, near Cranbrook, British Columbia, Canada. A–H, holotype, UA 14332, almost complete dorsal exoskeleton; photographs (A–C) and electron micrographs (D, backscattered; E–H, secondary) of the specimen in dorsal view with anterior facing to the top. A, B, general view in normal (A) and inverted (B) colours; C, D, detail of posterior trunk region, showing T12 and its contacts with T11 and the spiniform telson (arrows); the core of the fossil is made of a clay mineral and was initially entirely covered by an apatitic thin layer (white areas on D); E, left eye; F, right posterolateral glabellar lobe; G, rounded tubercles on right posterior border of cephalon; H, triangular tubercles pointing backwards (bottom right corner) on trunk axial region. Scale bars represent 5 mm (A, B), 1 mm (C, D), 500 μm (E, F), and 100 μm (G, H).

Link to the paper: https://www.researchgate.net/publication/309549546_Exceptionally-preserved_late_Cambrian_fossils_from_the_McKay_Group_British_Columbia_Canada_and_the_evolution_of_tagmosis_in_aglaspidid_arthropods

Friday, 16 January 2026

AMMONITES IN CONCRETION

At first glance they look like ordinary stones—rounded, weathered, unassuming. 

But then you notice the delicious hints: a spiral ghosting through the surface, a faint rib, a seam where time is ready to split wide open—it's magic!

Ammonites, long extinct cephalopods, so often appear this way because, shortly after death, their shells became chemical centres of attraction on the seafloor. 

As the soft tissues decayed, they altered the surrounding sediment, triggering minerals—often calcium carbonate or iron-rich compounds—to precipitate rapidly around the shell. 

This early cementation formed a concretion, a protective stone cocoon that hardened long before the surrounding mud was compressed into rock. While everything around it flattened, cracked, and distorted under pressure, the ammonite inside remained cradled and whole.

What you see here is a gathering of these time capsules: a cluster of ammonites preserved in their concretions, each one split or weathered just enough to reveal the coiled story within. 

Some are neatly halved, spirals laid bare like fingerprints from ages past; others are only just beginning to show themselves, teasing their presence beneath rough stone skins. 

Together, they tell a familiar fossil-hunter’s tale—of patience, sharp eyes, and the quiet thrill of knowing that a simple rock can hold an ancient ocean inside.

Thursday, 15 January 2026

BRYCE CANYON NATIONAL PARK

Bryce Canyon National Park 
From above, Bryce Canyon National Park looks less like a place on Earth and more like a revealed secret—an ancient city carved by time, its towers glowing ember-orange against the cool blues and violets of shadow. 

The hoodoos rise by the tens of thousands, slender spires and stacked pinnacles arranged in amphitheatres that curve like giant bowls scooped from the Paunsaugunt Plateau. 

Seen from the air, their geometry becomes mesmerizing: rows and clusters, corridors and cul-de-sacs, each column subtly different, each telling its own long, patient story.

These improbable forms are the product of relentless, delicate violence. Bryce’s hoodoos are sculpted from the Claron Formation, a sequence of sedimentary rocks laid down between about 50 and 35 million years ago, when this high plateau was a landscape of lakes, rivers, and floodplains. 

Limestone, mudstone, and siltstone stacked layer upon layer, later lifted skyward as the Colorado Plateau rose. What followed was not a single dramatic event, but millions of freeze–thaw cycles—water seeping into cracks by day, freezing and expanding by night—paired with rain, snowmelt, and gravity’s quiet insistence.

From the aerial view, colour tells the chemistry of the stone. Iron oxides stain the hoodoos in fiery reds and oranges, while manganese adds purples and lavenders that deepen as shadows lengthen. 

Pale caps of harder rock perch atop many spires like improbable hats, protecting the softer stone beneath and allowing the columns to stand long enough to earn their fantastical shapes. Where caps fall, hoodoos soon follow—proof that this is a living, changing landscape, not a static monument.

Light is the final sculptor. At sunrise, the amphitheatres ignite, each spire rimmed with gold. By midday, the forms sharpen and flatten, revealing the intricate fluting etched into their sides. 

As evening approaches, shadows flood the basins, pooling between the towers until the hoodoos seem to float, suspended in a sea of dusk. From above, those shadows trace the park’s hidden architecture, mapping the slow choreography of erosion.

Wednesday, 14 January 2026

THE GREAT FINGER FIASCO: HERMANN AND CUVIER

Johann Hermann's Pterodactylus, 1800
In the grand annals of science, few discoveries have flapped into history with quite as much confusion as the poor Pterodactylus

It began, as many great scientific mix-ups do, with an enthusiastic man, a misplaced fossil, and a few patriotic misunderstandings.

Back in March of 1800, Johann Hermann — a German-slash-French scientist (depending on which invading army was in town that week) — became convinced that an odd fossil described by Collini held the key to something extraordinary. 

Without actually seeing the specimen, Hermann took a bold scientific leap: he announced that the animal used its absurdly long fourth finger to support a wing membrane.

This, in hindsight, was rather brilliant — and also rather lucky. Hermann mailed off a letter (and a sketch) to the great French naturalist Georges Cuvier, suggesting that the fossil might even have been war booty, plundered by Napoleon’s scientifically curious troops and whisked off to Paris. After all, France’s armies were busily collecting everything from priceless art to interesting bones at the time — science’s version of a clearance sale.

In his letter, Hermann proposed that this mysterious creature was a mammal. Yes, a furry, bat-like, possibly adorable flying thing. He imagined it with soft pelage, wings stretching elegantly from its fourth finger to its ankle, and a fashionable membrane connecting neck to wrist — the very portrait of prehistoric glamour.

Cuvier, intrigued and perhaps unwilling to admit he didn’t have the fossil in question, agreed with the wing idea but drew the line at “fuzzy mammal.” In December 1800, he published a short note, adopting Hermann’s winged interpretation but firmly declaring, “Non, monsieur — this thing is definitely a reptile.

Meanwhile, the fossil — allegedly stolen, possibly missing, and definitely not in Paris — turned up safe and sound in Munich. It had been spared confiscation thanks to one Baron von Moll, who managed to secure an “exemption from French enthusiasm.”

By 1809, Cuvier revisited the mystery, producing a longer and more confident description. He called it Petro-Dactyle (a typo he later fixed to Ptéro-Dactyle), thereby cementing both his reputation and a new spelling headache for future generations of palaeontologists.

He also took the time to dunk on his colleague Johann Friedrich Blumenbach, who had suggested the fossil might belong to a shore bird. Cuvier’s rebuttal was deliciously dry:

“It is not possible to doubt that the long finger served to support a membrane that, by lengthening the anterior extremity of this animal, formed a good wing.”

And with that, science had its first flying reptile — a creature born not only from stone but from a glorious mix of imagination, rivalry, and a few well-placed postal misunderstandings.

If you ever feel unqualified to make a bold scientific claim, remember Johann Hermann — who identified a whole new order of life without even seeing the fossil. Sometimes, a good guess (and a long finger) can take you far as history shows here in the The Great Finger Fiasco: How Johann Hermann and Georges Cuvier Accidentally Invented the Flying Reptile. 

Tuesday, 13 January 2026

GRACEFUL BEAUTY: ALBERTONIA

This graceful beauty, with its elegant, sail-like fins and armour of shimmering scales, is Albertonia sp.—an Early Triassic ganoid fish whose lineage once glided through the recovering seas of what is now western Canada. 

Belonging to a group of extinct bony fishes remarkable for their enamel-coated, diamond-shaped ganoid scales, Albertonia offers a rare and intimate glimpse into life shortly after the end-Permian mass extinction, when marine ecosystems were slowly rebuilding themselves.

Specimens of Albertonia have been discovered in two significant rock units: the Sulphur Mountain Formation near Wapiti Lake in British Columbia and the Lower Triassic Montney Formation of Alberta. 

These formations preserve an extraordinary record of Early Triassic marine life—ecosystems shaped by fluctuating sea levels, restricted basins, and the evolutionary experimentation that followed Earth’s most profound biological crisis.

The Sulphur Mountain Formation, in particular, is renowned for its exceptional vertebrate fossils, including fishes, marine reptiles, and rare soft-tissue impressions. Within these beds, Albertonia appears as a slender, streamlined fish with surprisingly tall dorsal and anal fins—features that give it that distinctive “sail-like” profile. These fins likely played a role in stabilization and maneuverability, allowing it to dart through the shallow carbonate-siliciclastic seas with speed and precision.

Ganoid fishes like Albertonia are characterized by their thick, lustrous scales, locking together like a natural chainmail. These scales not only protected the fish from predators but also provide paleontologists with exquisite fossil details. In well-preserved specimens, you can sometimes see the subtle ornamentation—ridges, pits, and patterns—etched into the ganoine coating, each reflecting the biology of a world more than 245 million years removed from our own.

Though Albertonia is long extinct, its fossils help illuminate the pivotal evolutionary story that unfolded during the Early Triassic. As life clawed its way back from catastrophe, species like this little ganoid fish were among the pioneers of new ecological niches, their presence a quiet testament to resilience in ancient oceans.

Monday, 12 January 2026

MEET ACICULOLENUS ASKEWI AFTER DON ASKEW

A new species of trilobite from the upper Cambrian McKay Group was introduced in March of 2020: Aciculolenus askewi.  The species is named after Don Askew, an avid fossil hunter of Upper Cambrian trilobites from Cranbrook, British Columbia, Canada, who has discovered several new species in the East Kootenays. 

Don was the first to brave the treacherous cliffs up the waterfall on the west side of the ravine below Tanglefoot mountain. 

That climb led to his discovery of one of the most prolific outcrops in the McKay Group with some of the most exciting and best-preserved trilobites from the region. 

The faunal set are similar to those found at site one — the first of the trilobite outcrops discovered by Chris New and Chris Jenkins — an hours hike through grizzly bear country.

The specimens found at the top of the waterfall are not in calcite wafers, as they are elsewhere, instead, these exceptionally preserved specimens are found complete with a thin coating of matrix that must be prepped down to the shell beneath. 

Askew was also the skill preparator called upon to tease out the details from the 'gut trilobite' recently published from the region. In all, this area has produced more than 60 new species — many found by Askew — and not all of which have been published yet.

I caught up with Don last summer on a trip to the region. He was gracious in openly sharing his knowledge and a complete mountain goat in the field — a good man that Askew. Not surprising then that Brian Chatterton would do him the honour of naming this new species after him. 

Chatterton, Professor Emeritus at the University of Alberta, is an invertebrate palaeontologist with a great sense of humour and a particular love of trilobites. Even so, his published works span a myriad of groups including conodonts, machaeridians, sponges, brachiopods, corals, cephalopods, bivalves, trace fossils — to fishes, birds and dinosaurs.

Brian Chatterton has been visiting the East Kootenay region for many years. In 1998, he and Rolf Ludvigsen published the pivotal work on the "calcified trilobites" we had begun hearing about in the late 1990s. There were tales of blue trilobites in calcified layers guarded by a resident Grizzly. This was years before logging roads had reached this pocket of paleontological goodness and hiking in — bear or no bear — was a daunting task. 

In his Cambridge University Press paper, Chatterton describes the well-preserved fauna of largely articulated trilobites from three new localities in the Bull River Valley. 

The Dream Team at Fossil Site #15, East Kootenays
All the trilobites from these localities are from the lower or middle part of the Wujiajiania lyndasmithae Subzone of the Elvinia Zone, lower Jiangshanian, in the McKay Group. 

Access is via a bumpy ride on logging roads 20 km northeast of Fort Steele that includes fording a river (for those blessed with large tires and a high wheelbase) and culminating in a hot, dusty hike and death-defying traipse down 35-degree slopes to the localities.

Two new species were proposed with types from these localities: Aciculolenus askewi and Cliffia nicoleae. The trilobite (and agnostid) fauna from these localities includes at least 20 species that read like a who's who of East Kootenay palaeontology: 

Aciculolenus askewi n. sp., Agnostotes orientalis (Kobayashi, 1935), Cernuolimbus ludvigseni Chatterton and Gibb, 2016, Cliffia nicoleae n. sp., Elvinia roemeri (Shumard, 1861), Grandagnostus? species 1 of Chatterton and Gibb, 2016, Eugonocare? phillipi Chatterton and Gibb, 2016, Eugonocare? sp. A, Housia vacuna (Walcott, 1912), Irvingella convexa (Kobayashi, 1935), Irvingella flohri Resser, 1942, Irvingella species B Chatterton and Gibb, 2016, Olenaspella chrisnewi Chatterton and Gibb, 2016, Proceratopyge canadensis (Chatterton and Ludvigsen, 1998), Proceratopyge rectispinata (Troedsson, 1937), Pseudagnostus cf. P. josepha (Hall, 1863), Pseudagnostus securiger (Lake, 1906), Pseudeugonocare bispinatum (Kobayashi, 1962), Pterocephalia sp., and Wujiajiania lyndasmithae Chatterton and Gibb, 2016.

Chris New, pleased as punch atop Upper Cambrian Exposures
It has been the collaborative efforts of Guy Santucci, Chris New, Chris Jenkins, Don Askew and Stacey Gibb that has helped open up the region — including finding and identifying many new species or firsts including Pseudagnostus securiger, a widespread early Jiangshanian species not been previously recorded from southeastern British Columbia. 

Other interesting invertebrate fossils from these localities include brachiopods, rare trace fossils, a complete silica sponge (Hyalospongea), and a dendroid graptolite. 

The species we find here are more diverse than those from other localities of the same age in the region — and enjoy much better preservation. 

The birth of new species into our scientific nomenclature takes time and the gathering of enough material to justify a new species name. Fortunately for Labiostria gibbae, specimens had been found of this rare species had been documented from the upper part of Wujiajiania lyndasmithae Subzone — slightly younger in age. 

Combined with an earlier discovery, they provided adequate type material to propose the new species — Labiostria gibbae — a species that honours Stacey Gibb and which will likely prove useful for biostratigraphy.

Reference: https://www.cambridge.org/core/journals/journal-of-paleontology/article/abs/midfurongian-trilobites-and-agnostids-from-the-wujiajiania-lyndasmithae-subzone-of-the-elvinia-zone-mckay-group-southeastern-british-columbia-canada/E8DBC8BD635863E840715122C05BB14A#

Photo One: Aciculolenus askewi by Chris Jenkins, Cranbrook, British Columbia
Photo Two: L to R: Dan Bowden, Guy Santucci, Chris Jenkins, Dan Askew and John Fam at Fossil Site #15, East Kootenay Region, British Columbia, Canada, August 2, 2020.
Photo Three: Chris New pleased as punch atop of Upper Cambrian Exposures in the East Kootenay Region, British Columbia, Canada

Saturday, 10 January 2026

SCIENCE AND SHENANIGANS: PACIFIC NORTHWEST BEARS

If you spend enough time in the forests of the Pacific Northwest, you start to understand why Ursus americanus and Ursus arctos horribilis have held court in our stories for millennia. 

They’re curious, clever, deeply maternal, occasionally cranky, and—much like your favourite mischievous cousin at a family reunion—always two steps from either a cuddle or a wrestling match.

Bear play looks adorable from afar—soft paws swatting, roly-poly wrestling, mock charges that end in huffing and zoomies—but make no mistake: this is serious business. 

For young black bears and grizzlies, play is the curriculum of survival. 

Wrestling hones strength and coordination. Chase games build stamina and teach cubs how to gauge speed and momentum in uneven terrain. 

You will recognize the mouthing and pawing in bears if you have ever watched dogs playfighting. It has that same feel but with a much bigger smack.

Even the classic “stand up and paw slap” routine teaches social cues, dominance negotiation, and how to not get clobbered during adult interactions later on.

Adults play too—usually in the brief windows when food is plentiful, neighbours are tolerable, and no one is watching who might judge them for being goofballs. 

Scientists have documented adult grizzlies sliding down snow patches on their backs and black bears engaging in curious-object play, poking logs, tossing salmon carcasses, and investigating anything that smells even remotely like an adventure.

Interactions between bears are a delicate dance of dominance, tolerance, and opportunism. 

Adult females tend to keep to themselves, especially when raising cubs, while males roam wider territories and have higher tolerance thresholds—at least until another big male wanders too close to a prime feeding spot.

During salmon runs, though, everything changes. Suddenly you’ll see a whole cast of characters congregate along rivers: veteran matriarchs who fish with surgical precision, rowdy subadults who think stealth means “splash loudly until the fish give up,” and massive males who square off in dominance displays worthy of a heavyweight title card. 

Most conflicts end with bluff charges, raised hackles, and guttural woofs, but real fights—when they happen—are fast, violent, and rarely forgotten by the loser.

Maternal Tenderness: Mamma & Cub
If bears had résumés, every mother would list “24/7 security expert,” “milk bar proprietress,” and “professor of applied survival sciences.”

Cubs are born in winter dens, impossibly tiny—around 300 to 500 grams—and almost hairless, little squeaking marshmallows who depend entirely on their mother’s warmth and fat reserves. 

Over the next 18–30 months, a mother teaches her young everything: which plants won’t poison you, how to find grubs by the sound of a rotting stump, how to climb fast when trouble arrives, and how to read the moods of other bears.

Her tenderness is matched only by her ferocity. A mother bear defending cubs is one of the most formidable forces in the forest, and even adult males—three times her size—think twice before pushing their luck.

Where Bears Appear in the Fossil Record

Bears are relative newcomers in deep time, with the earliest ursoids emerging in the late Eocene, around 38 million years ago. True bears (family Ursidae) appear in the early Miocene, and by the Pliocene and Pleistocene, the Pacific Northwest was home to a rich lineup of ursids, including the mighty Arctodus simus, the short-faced bear—one of the largest terrestrial carnivores to ever live in North America.

Black bears show up in the fossil record around the mid-Pleistocene, with fossils found in caves and river-cut sediments from British Columbia down to California. Grizzly bears, originally a Eurasian species, crossed the Bering land bridge during the Pleistocene, leaving their remains in Late Pleistocene deposits from Alaska through western Canada.

Today, the Pacific Northwest remains a stronghold for bears:

Black bears are the most numerous, with an estimated 25,000–35,000 individuals in British Columbia alone, and healthy populations throughout Washington, Oregon, and Idaho. They’re adaptable, omnivorous, and just clever enough to defeat most human attempts at bear-proofing.

Grizzly bears (coastal and interior populations) are far fewer. British Columbia hosts an estimated 13,000–15,000, though distribution varies greatly. 

Coastal bears—brown bear or spirit bears—are more numerous and enjoy a salmon-rich in diet, while interior grizzlies face more fragmented landscapes and higher conflict pressures. In the Lower 48, grizzlies number around 2,000, clustered mainly in the Greater Yellowstone and Northern Continental Divide ecosystems.

Conservation efforts, especially Indigenous-led stewardship across the Great Bear Rainforest and interior plateaus, continue to shape recovery, resilience, and coexistence strategies for both species.

Friday, 9 January 2026

CHENGJIANG: A WINDOW INTO THE DAWN OF LIFE

Maotianshania cylindrica
High in the mist-softened hills of Yunnan Province, China, a band of ochre and grey shale holds one of Earth’s most extraordinary archives—a fossil record so exquisitely preserved that even the gills, antennae, and gut tracts of animals from over 518 million years ago remain visible. 

This is Chengjiang, a UNESCO World Heritage Site and one of the most important early Cambrian Lagerstätten on the planet.

Here, at the base of the Maotianshan shales, paleontologists have uncovered a moment of evolutionary ignition: the rapid diversification of complex animal life known as the Cambrian Explosion.

The Geological Setting: Maotianshan Shales

The Chengjiang fossil exposures occur within the Yu’anshan Member of the Heilinpu Formation, deposited in a quiet, offshore marine environment during the Cambrian. 

These fine-grained mudstones accumulated under low-oxygen conditions—an essential factor that inhibited decay and burrowing, allowing soft tissues to fossilize with remarkable fidelity.

Key geological features:

  • Age: ~518–520 Ma
  • Depositional environment: Distal, oxygen-poor shelf
  • Sediment: Fine mudstones and shales ideal for preserving delicate structures
  • Taphonomy: Rapid burial via storm-induced sediment flows, sealing organisms beneath thin laminae

It is this marriage of rapid burial and anoxic bottom waters that created one of Earth’s rare Konservat-Lagerstätten, preserving not only bones and shells but organs, musculature, and entire life assemblages.

Lead Image Credit: Maotianshania cylindrica. Phylum: Nematomorpha Early Cambrian Chengjiang, Maotianshan Shales, SNP. Released under the GNU Free Documentation License

Thursday, 8 January 2026

TASEKO LAKES FOSSIL ADVENTURE

John Fam, VIPS & VanPS
Over three field seasons, thirty-five taxa from the Mineralense and Rursicostatum zones were studied and three new species were discovered and named: Fergusonites hendersonae, Eolytoceras constrictum and Pseudaetomoceras victoriense

The late Hettangian ammonite fauna from Taseko Lakes is diverse and relatively well‐preserved.

This material is very important as it greatly expands our understanding of the fauna and ranges of ammonites currently included in the North American regional ammonite zonation. 

Castle Peak, Taseko Lakes
If you look closely, you can see a wee jet ranger helicopter hovering over a very chilly Castle Peak in the southern Chilcotin Range, British Columbia, Canada. 

Castle Peak served as our glorious landmark and loadstone of basalt that marked the spot on our Jurassic/Triassic palaeo adventures collecting about 7000 ft. 

The peak itself reaches higher still to around 8,176 ft. 

The site is special, both in terms of its geology and paleontological bounty, but also for the time spent there with friends. 

I had the very great honour of having the newly named, Fergusonites hendersonae, a new species of nektonic carnivorous ammonite, named after me by palaeontologist Louse Longridge from the University of British Columbia. 

Fergusonites hendersonae (Longridge, 2008)
I had met Louise as an undergrad and was pleased as punch to hear that she would be continuing the research by Dr. Howard Tipper, the authority on this area of the Chilcotins and Haida Gwaii — which he dearly loved. 

"Tip" was a renowned Jurassic ammonite palaeontologist and an excellent regional mapper who mapped large areas of the Cordillera. 

He made significant contributions to Jurassic paleobiogeography and taxonomy in collaboration with Dr. Paul Smith, Head of Earth and Ocean Science at the University of British Columbia. 

Tip’s regional mapping within BC has withstood the test of time and for many areas became the region's base maps for future studies. The scope of Tip’s understanding of Cordilleran geology and Jurassic palaeontology will likely never be matched. He passed away on April 21, 2005. His humour, knowledge and leadership will be sorely missed. 

Badouxia ammonites
Before he left us, he shared that knowledge with many of whom would help to secure his legacy for future generations. 

We did several trips over the years up to the Taseko Lake area of the Rockies joined by many wonderful researchers from the Vancouver Island Palaeontological Society and Vancouver Paleontological Society, as well as the University of British Columbia. 

Both Dan Bowen and John Fam were instrumental in planning those expeditions and each of them benefited greatly from the knowledge of Dr. Howard Tipper. 

If not for Tipper's early work in the region, our shared understanding and much of what was accomplished in his last years and after his passing would not have been possible. 

Over the course of three field seasons, we endured elevation sickness, rain, snow, grizzly bears and very chilly nights  — we were sleeping right next to a glacier at one point — but were rewarded by the enthusiastic crew, and helicopter rides — which really cut down the hiking time — excellent specimens including three new species of ammonites, along with a high-spired gastropod and lobster claw that have yet to be written up. 

This area of the world is wonderful to hike and explore — a stunningly beautiful country. We were also blessed with access as the area is closed to all fossil collecting except with a permit.

Wednesday, 7 January 2026

BRITISH MUSEUM LONDON

Hope Whale
Stepping into the Natural History Museum, I was immediately greeted by Hope, the enormous blue whale skeleton gliding above Hintze Hall. 

It’s an impressive welcome—one that sets the tone for the rest of the visit. I wandered first into the Fossil Marine Reptile Gallery, where ichthyosaurs and plesiosaurs stretched out in long, elegant arcs along the walls. 

There’s something grounding about standing beside creatures that ruled the seas millions of years before humans took their first steps.

From there, I couldn’t resist the Dinosaur Gallery. Stegosaurus—one of the most complete specimens of its kind—is a standout, and I paused for a while to take in the armour plates and that iconic spiked tail. 

Nearby, familiar favourites like Triceratops and Corythosaurus anchor the room, drawing steady streams of families and wide-eyed kids.

The Earth Galleries offered a completely different kind of magic. 

Gemstones glittered under soft lights, meteorites sat quietly in their cases, and huge crystals seemed almost unreal in their clarity. Each display felt like a reminder of how beautiful and varied our planet really is.

I ended my visit in the Darwin Centre, where rows of preserved specimens and interactive exhibits gave a glimpse into the research happening behind the scenes. 

It’s easy to forget that the museum isn’t just a place to display the natural world—it’s an active hub for studying it.

By the time I left, I’d only scratched the surface, but that’s the best part. The museum is the kind of place you can return to again and again, always finding something new tucked into its halls.

I returned at three different times in a week to catch the galleries at various times of day to see the natural light hitting the displays, especially in the marine reptile gallery, so I could take in all the wonderful details. 

Tuesday, 6 January 2026

FROM LAND TO SEA: SEALS

Seals—those sleek, playful creatures that glide through our oceans and lounge on rocky shores—are part of a remarkable evolutionary story stretching back millions of years. 

Though we often see them today basking on beaches or popping their heads above the waves, their journey through the fossil record reveals a dramatic tale of land-to-sea adaptation and ancient global wanderings.

Seals belong to a group of marine mammals called pinnipeds, which also includes sea lions and walruses. 

All pinnipeds share a common ancestry with terrestrial carnivores, and their closest living relatives today are bears and mustelids (like otters and weasels). 

While it may seem unlikely, their ancestors walked on land before evolving to thrive in marine environments. It takes many adaptations for life at sea and these lovelies have adapted well. 

The fossil record suggests that pinnipeds first emerged during the Oligocene, around 33 to 23 million years ago. 

These early proto-seals likely lived along coastal environments, where they gradually adapted to life in the water. Over time, their limbs transformed into flippers, their bodies streamlined, and their reliance on the sea for food and movement became complete.

In Kwak'wala, the language of the Kwakwaka'wakw First Nations of the Pacific Northwest, seals are known as migwat, and fur seals are referred to as xa'wa.

Monday, 5 January 2026

WHEN CROCODILES WENT ROGUE: VOAY ROBUSTUS

Voay robustus
Let’s begin in Madagascar—a place so rich in oddities that it makes Australia look like it’s playing it safe. 

Here, until a few thousand years ago, lived Voay robustus, the so-called “horned crocodile.” 

Imagine your average Nile crocodile, Crocodylus niloticus, then give it a set of knobby horns just above the eyes, a chunkier skull, and a personality that can best be described as “aggressively misunderstood.”

Voay robustus was no dainty island reptile. This was a serious piece of croc engineering—up to 5 metres long and built like it had something to prove. Its very name says it all: “Voay” (from the Malagasy word for crocodile) and “robustus,” because apparently scientists looked at it and thought, “yes, that’s the robust one.”

The first thing to know about Voay is that it was one of the last survivors of Madagascar’s lost megafauna. While lemurs were still the size of gorillas and elephant birds stomped through the underbrush like feathered tanks, Voay robustus lurked in rivers and swamps, waiting patiently for something—anything—to make a poor life choice near the water’s edge.

For decades, Voay was a bit of a taxonomic mystery. When first described in the 19th century, some thought it might be a close cousin of the Nile crocodile, others insisted it was something entirely different. Scientists bickered, skulls were compared, and Latin names were flung around like darts at a pub quiz.

Then, in 2021, the DNA finally weighed in. Using ancient genetic material from subfossil skulls, researchers revealed that Voay robustus wasn’t a Nile crocodile at all—it was actually the closest known relative of the modern Crocodylus lineage, having split off around 25 million years ago. That makes it something like the evolutionary cousin who shows up at family reunions wearing leather, talking about their motorcycle, and asking everyone if they’ve “still gone soft.”

The Horned Enigma — The most distinctive feature of Voay robustus was its skull—particularly those raised, bony “horns” above its eyes. They weren’t true horns, of course, but enlarged ridges of bone, possibly used for species recognition, intimidation, or just looking fabulous. If you’ve ever seen a crocodile and thought, “You know what that needs? More attitude,” Voay had you covered.

Palaeontologists still debate whether those horns meant Voay was more territorial, more aggressive, or simply had a flair for drama. In any case, it must have been a striking sight. 

Picture it: the sun setting over a Malagasy river, the water rippling slightly as a pair of horned eyes rise from below. Birds go silent. A lemur freezes. Somewhere, a herpetologist gets very, very excited.

Madagascar is known for being a biological experiment that got out of hand. Cut off from Africa for around 160 million years, the island evolved its own cast of peculiar creatures: giant lemurs, pygmy hippos, and flightless birds the size of small Volkswagens. Into this mix slithered and splashed Voay robustus, likely arriving during a period of low sea levels that made crossings from the mainland possible.

Once there, Voay probably established itself at the top of the food chain—and stayed there. Anything coming down to drink was fair game. Lemur, bird, hippo, or careless human ancestor—Voay didn’t discriminate. It’s hard to imagine anything else on the island telling a 5-metre crocodile what it could or couldn’t eat.

And yet, despite being a literal apex predator, Voay robustus didn’t make it to the present day. The species vanished roughly 1,200 years ago, right around the time humans arrived in Madagascar. Coincidence? Probably not.

When Humans Moved In — The timeline tells a familiar story. People reach the island about 2,000 years ago. Within a millennium, the megafauna are gone. The giant lemurs disappear, the elephant birds vanish, and the horned crocodile—perhaps hunted, perhaps losing habitat—slips into extinction.

You might imagine that Voay robustus was at least a little resentful about this turn of events. After all, it had survived millions of years of climate swings, sea-level changes, and evolutionary curveballs. And then along came humans, with their spears, boats, and general knack for ecological chaos.

It’s even been suggested that early Malagasy legends of giant crocodiles or river spirits might echo distant memories of encounters with Voay. Which, frankly, would make sense. If a horned, five-metre reptile lunged at your canoe one evening, you’d probably tell stories about it for generations, too.

Genetically, Voay robustus offers a fascinating window into crocodile evolution. While modern Crocodylus species are found across Africa, Asia, the Americas, and Australia, Voay sat just outside that global radiation. In other words, it was part of the evolutionary stem group that gave rise to today’s true crocodiles—but it stayed put while its cousins spread out and diversified.

That makes Voay something of a living fossil that outstayed its welcome—Madagascar’s own reminder of an older, meaner age. Its extinction left the island without any native crocodiles, though Nile crocodiles have since colonised parts of the west coast, re-establishing the ancient reptilian grin on Malagasy soil.

Today, Voay robustus lives on in subfossil bones, DNA samples, and the collective imagination of herpetologists who still dream of rediscovering one lurking somewhere in a forgotten swamp. (They won’t, of course—but it’s nice to dream.)

If anything, Voay reminds us that evolution loves a good experiment, especially on islands. Give a crocodile a few million years in isolation, and it might just decide it wants horns.

And if there’s a moral here—besides “don’t go swimming in prehistoric Madagascar”—it’s that even the fiercest, most robust of creatures can vanish when the world around them changes. So here’s to Voay robustus: horned, hulking, and gone too soon.

Image credit: By LiterallyMiguel - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=163874814

Sunday, 4 January 2026

HERMIT CRAB: REAL ESTATE TYCOONS OF THE FORESHORE

This little cutie is a hermit crab and he is wearing a temporary home borrowed from one of our mollusc friends. 

His body is a soft, squishy spiral that he eases into the perfect size shell time and time again as he grows. 

His first choice is always the empty shell of a marine snail but will get inventive in a pinch — nuts, wood, serpulid worm tubes, aluminium cans or wee plastic caps. 

They are inventive, polite and patient. 

You see, a hermit crabs' desire for the perfect bit of real estate will have them queueing beside larger shells — shells too large for them — to wait upon a big hermit crab to come along, discard the perfect home and slip into their new curved abode. This is all done in an orderly fashion with the hermit crabs all lined up, biggest to smallest to see who best fits the newly available shell. 

There are over 800 species of hermit crab — decapod crustaceans of the superfamily Paguroidea. Their lineage dates back to the Jurassic, 200 million years ago. 

Their soft squishy, weakly calcified bodies do not fossilize all that often but when they do the specimens are spectacular. Think of all the species of molluscs these lovelies have had a chance to try on — including ammonites — and all the shells that were never buried in sediment to become fossils because they were harvested as homes.  

On the shores of British Columbia, Canada, the hermit crab I come across most often is the Grainyhand hermit crab, Pagurus granosimanus

These wee fellows have tell-tale orange-brown antennae and olive green legs speckled with blue or white dots. 

In the Kwak̓wala language of the Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, a shell is known as x̱ala̱'is and gugwis means house on the beach. 

I do not know the Kwak’wala word for a hermit crab, so I will think of these cuties as x̱ala̱'is gugwis — envisioning them finding the perfect sized shell on the surf worn shores of Tsax̱is, Fort Rupert, Vancouver Island. 

Saturday, 3 January 2026

BANFF NATIONAL PARK, CANADA

Banff National Park is breathtaking from any angle, but from the air it feels otherworldly—an alpine tapestry of turquoise lakes, braided rivers, and peaks stitched with glacier-light. 

Flying above it, you see the Rockies as the early surveyors must have: raw, immense, and defiantly ancient.

The town of Banff itself began humbly in the 1880s, growing from a railway stop on the new transcontinental line into Canada’s first national park. Railroad workers stumbled upon the Cave and Basin hot springs, sparking a cascade of interest in the area’s geology, wildlife, and deep-time history.

That same geology would soon draw paleontologists into the region’s wild backcountry. Just west of Banff, high on a ridge in Yoho National Park, lies the legendary Burgess Shale—one of the most important fossil sites on Earth. 

Discovered in 1909 by Charles Doolittle Walcott of the Smithsonian, the Burgess Shale preserves exquisitely detailed soft-bodied creatures from over 500 million years ago, offering a rare window into early animal evolution. 

Banff became the nearest hub—its hotels, trails, and later its research community supporting generations of scientists, students, and fossil-hungry adventurers heading into the high passes.

Seen from the sky today, Banff is a quiet modern town nestled among mountains that have been sculpted for hundreds of millions of years. Its story—of hot springs, railways, and extraordinary fossils—is always a delight to explore nestled in Canada's glorious Rockies.

Friday, 2 January 2026

LINGULA ANATINA: PRIMATIVE BRACHIOPOD

Lingula anatina — Primitive Brachiopod 
One of the most primitive and enduring brachiopods alive today is the caramel-and-cream–coloured Lingula anatina

Though modest in appearance, this unassuming marine invertebrate tells a story that stretches back over half a billion years — a direct lineage to the dawn of complex animal life.

Brachiopods are marine, stalked (pedunculate) invertebrates with two shells — or valves — hinged at the rear. To the casual observer, they resemble clams or mussels, but this similarity is purely superficial. 

In bivalves such as clams, the two shells sit on either side of the animal, and their plane of symmetry runs along the hinge line. Brachiopods, on the other hand, have shells on the top and bottom, with the line of symmetry running perpendicular to the hinge. This fundamental difference reveals two entirely separate evolutionary paths that converged on a similar shell-bearing lifestyle.

Lingula anatina belongs to one of the oldest known animal groups, with unmistakable brachiopod fossils appearing in rocks dating back some 530 million years, during the early Cambrian. These forms represent the first certain evidence of brachiopods in the fossil record, appearing at a time when most major animal body plans were emerging during the so-called “Cambrian Explosion.”

Unlike most modern shell-bearing animals, Lingula’s shell lacks a locking mechanism. Instead, it relies on a complex system of muscles to open and close the valves with precision. Its shell is composed not of calcium carbonate like most other shelled marine creatures, but of calcium phosphate and collagen fibres — a combination it shares only with vertebrates, making it one of the earliest known examples of animal biomineralisation. 

This process, where organisms harden tissues with minerals, represents a major evolutionary innovation that would later shape the biology of countless marine and terrestrial forms.

Lingula anatina can be found buried in sandy or muddy sediments of shallow marine environments, where it uses its muscular stalk (or pedicle) to anchor itself and burrow down into the seafloor. There it filters plankton and organic particles from the water, much as its ancestors did hundreds of millions of years ago. 

Its remarkable persistence — both in form and ecological niche — has led paleontologists to call Lingula a “living fossil.” Charles Darwin himself used this very term when describing its extraordinary morphological conservatism. Indeed, specimens from the Silurian Period (443–419 million years ago) are nearly indistinguishable from those alive today.

While other brachiopod lineages flourished and faded through the great mass extinctions of Earth’s history, Lingula endured — a small, steadfast witness to 500 million years of changing seas. Its simple elegance hides a profound truth: sometimes survival is not about innovation, but about perfecting a design so well-suited to its environment that evolution has little left to improve.

Photo: Wilson44691 - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=8624418

Thursday, 1 January 2026

FOSSIL HUNTRESS PALEONTOLOGY PODCAST

Step into deep time with the Fossil Huntress Podcast—your warm and wonder-filled gateway to dinosaurs, trilobites, ammonites, and the astonishing parade of life that has ever walked, swum, or crawled across our planet.

Close your eyes and travel with me through ancient oceans teeming with early life, lush primeval forests echoing with strange calls, and sunbaked badlands where the bones of giants rest beneath your feet. 

Each episode is a journey into Earth’s secret past, where every fossil tells a story and every stone remembers.

Together, we’ll wander across extraordinary fossil beds, sacred landscapes, and timeworn shores that have witnessed the rise and fall of worlds. 

From tiny single-celled pioneers to mighty dinosaurs, from cataclysms to new dawns, this is where science meets storytelling—and where the past comes vividly alive.

So wherever you are—on the trail, by the sea, or cozy at home—bring your curiosity and join me in the great adventure of discovery. Favourite the show and come fossil-hunting through time with me!

Listen now: Fossil Huntress Podcast on Spotify: https://open.spotify.com/show/1hH1wpDFFIlYC9ZW5uTYVL

Wednesday, 31 December 2025

LIVING FOSSILS: MASTERS OF MASS EXTINCTION EVENTS

Horseshoe crabs are marine and brackish water arthropods of the order Xiphosura — a slowly evolving, conservative taxa.

Much like (slow) Water Striders (Aquarius remigis), (relatively sluggish) Coelacanth (Latimeria chalumnae) and (the current winner on really slow evolution) Elephant Sharks (Callorhinchus milii), these fellows have a long history in the fossil record with very few anatomical changes. 

But slow change provides loads of great information. It makes our new friend, Yunnanolimulus luoingensis, an especially interesting and excellent reference point for how this group evolved. 

We can examine their genome today and make comparisons all the way back to the Middle Triassic (with this new find) and other specimens from further back in the Ordovician — 445 million years ago. 

These living fossils have survived all five mass extinction events. They are generalists who can live in shallow or deep water and will eat pretty much anything they can find on the seafloor.

The oldest horseshoe crab fossil, Lunataspis aurora, is found in outcrops in Manitoba, Canada. Charmingly, the name means crescent moon shield of the dawn. It was palaeontologist Dave Rudkin and team who chose that romantic name. Finding them as fossils is quite remarkable as their shells are made of protein which does not mineralized like typical fossils.

Even so, the evolution of their exoskeleton is well-documented by fossils, but appendage and soft-tissue preservation are extremely rare. 

A new study analyzes details of the appendage and soft-tissue preservation in Yunnanolimulus luoingensis, a Middle Triassic (ca. 244 million years old) horseshoe crab from Yunnan Province, SW China. The remarkable anatomical preservation includes the chelicerae, five pairs of walking appendages, opisthosomal appendages with book gills, muscles, and fine setae permits comparison with extant horseshoe crabs.

The close anatomical similarity between the Middle Triassic horseshoe crabs and their recent analogues documents anatomical conservatism for over 240 million years, suggesting persistence of lifestyle.

The occurrence of Carcinoscorpius-type claspers on the first and second walking legs in male individuals of Y. luoingensis tells us that simple chelate claspers in males are plesiomorphic for horseshoe crabs, and the bulbous claspers in Tachypleus and Limulus are derived.

As an aside, if you hadn't seen an elephant shark before and were shown a photo, you would likely say, "that's no freaking shark." You would be wrong, of course, but it would be a very clever observation.

Callorhinchus milii look nothing like our Great White friends and they are not true sharks at all. Rather, they are ghost sharks that belong to the subclass Holocephali (chimaera), a group lovingly known as ratfish. They diverged from the shark lineage about 400 million years ago.

If you have a moment, do a search for Callorhinchus milii. The odd-looking fellow with the ironic name, kallos, which means beautiful in Greek, sports black blotches on a pale silver elongate body. And their special feature? It is the fishy equivalent of business in the front, party in the back, with a dangling trunk-like projection at the tip of their snout and well-developed rectal glands near the tail.

As another small point of interest with regards to horseshoe crabs, John McAllister collected several of these while working on his MSc to see if they had microstructures similar to trilobites (they do) and whether their cuticles were likewise calcified. He found no real calcification in their cuticles, in fact, he had a rather frustrating time getting anything measurable to dissolve in acid in his hunt for trace elements. 

Likewise, when looking at oxygen isotopes (16/18) to get a handle on water salinity and temperature, his contacts at the University of Waterloo had tons of fun getting anything at all to analyze. It made for some interesting findings. Sadly, for a number of reasons, he abandoned the work, but you can read his very interesting thesis here: https://dr.library.brocku.ca/handle/10464/1959

Ref: Hu, Shixue & Zhang, Qiyue & Feldmann, Rodney & Benton, Michael & Schweitzer, Carrie & Huang, Jinyuan & Wen, Wen & Zhou, Changyong & Xie, Tao & Lü, Tao & Hong, Shuigen. (2017). Exceptional appendage and soft-tissue preservation in a Middle Triassic horseshoe crab from SW China. Scientific Reports. 7. 10.1038/s41598-017-13319-x.

Tuesday, 30 December 2025

THE WOMAN WHO SMUGGLED SCIENCE INTO FAIRY TALES: CLEMENTINE HELM BEYRICH

Clementine Helm Beyrich
On a gray Berlin morning in the winter of 1863, a young girl named Anna padded quietly into her foster mother’s study. She expected to find Clementine Helm bent over a draft of some gentle domestic tale. 

Instead, she found her deep in conversation with a visiting scientist, listening intently as he described fossil beds in Prussia and the strange, ancient creatures locked within them. 

Anna watched, transfixed, as Clementine’s eyes lit up — not with the polite interest expected of a nineteenth-century woman, but with the unmistakable flare of curiosity. 

After the visitor left, Clementine turned back to her manuscript with renewed purpose. 

In that moment, Anna realized something that readers across Central Europe would soon discover: her aunt was not merely a writer of stories; she was quietly, persistently rewriting the boundaries of what a woman could know — and teach — about the natural world.

Clementine Helm Beyrich (1825–1896) grew up on the edges of two worlds: one bound by the strict social expectations placed on girls in the German states, and another brimming with scientific possibility. 

Orphaned early in life, she was raised first by one maternal uncle and then another — the latter being the mineralogist Christian Samuel Weiss, whose Berlin household was steeped in geology, crystallography, and lively intellectual debate. It was an unusual atmosphere for a girl of her time, and Clementine absorbed it eagerly.

Bismark Residence, Berlin, Germany 1880s
She came to Berlin to earn a teaching diploma at the Königliche Luisenstiftung, one of the few places where a determined young woman could pursue higher education. She taught for several years, and the discipline, empathy, and pedagogical instinct she developed there flowed directly into her writing.

In 1848 she married Heinrich Ernst Beyrich — her uncle’s student, who would become a celebrated geologist and palaeontologist. 

Their home quickly became a salon of scientists, artists, and writers. Among their circle were Theodor Fontane, Otto Roquette, and Friedrich Eggers, all members of the Rütli literary group. Clementine, by all accounts, held her own in these conversations with warmth, intelligence, and a quiet but formidable wit.

The couple never had children of their own, but Clementine adopted and lovingly raised her nieces, Anna and Elly, after the death of her sister in 1851. Their letters and diaries show how deeply they influenced Clementine’s storytelling — and how deeply she shaped their intellectual lives in return.

Clementine published her first work — children’s songs — in 1861. Over the next three decades she produced more than 40 books, countless stories, fairy tales, and anthologies, and even launched an annual girls’ almanac with fellow writer Frida Schanz. 

Her books were widely translated into English, French, Dutch, and Scandinavian languages. Her most famous novel, Backfischchens Leiden und Freuden (1863), became a beloved example of the Backfischroman — fiction for adolescent girls.

But Clementine’s work was never just entertainment.

She used her stories to offer young readers something exceedingly rare: a window into science. She slipped geology, palaeontology, biology, and the ongoing debates of the scientific world into narratives about girls discovering themselves. 

In Dornröschen und Schneewittchen, she openly referenced Darwin’s On the Origin of Species — a daring choice in an era when evolution was still scandalous, especially in literature intended for girls. Her heroines were curious, educated, and hungry for understanding. They were not passive ornaments but participants in the unfolding story of scientific discovery.

Breaking Barriers — Quietly, Brilliantly

In the nineteenth century, women were barred from studying geoscience formally, let alone publishing on it. Clementine Helm Beyrich found a way around that barrier with imagination as her passport. Surrounded by some of the greatest scientific minds of the German Empire — including Alexander von Humboldt, Ernst Haeckel, Weiss, and Beyrich himself — she absorbed the new ideas shaping geology and evolutionary thought. 

She then transformed that knowledge into accessible, engaging literature for young readers.

She may not have held an academic position, but she became something just as powerful: a popularizer of geoscience at a time when most women were denied even the permission to be curious.

Through fairy tales infused with fossils and novels threaded with natural history, she carried scientific ideas into households across Central Europe. Her legacy is not only in the books she wrote but in the minds she opened — especially the girls who saw themselves reflected in her brave, inquisitive characters and realized that intellect belonged to them, too.

Clementine died in 1896, just a month after her husband. But the quiet revolution she sparked — the insistence that girls could think deeply about the world, and that science belonged to them as much as anyone — continued long after her final chapter.

Monday, 29 December 2025

THE EUROPEAN FLAMINGO: STILT WALKERS OF ANTIQUITY

European Flamingo
At dawn along the salt lagoons of the Mediterranean, the European flamingo rises like a soft-feathered sunrise, a sweep of pale rose and ember pink drifting across mirror-still water. 

Their long, reed-thin legs stitch delicate ripples through the shallows, while their downcurved bills — precision tools of evolutionary engineering — sift brine shrimp and algae with gentle, rhythmic sweeps.

But Phoenicopterus roseus, the European flamingo, is more than a creature of luminous wetlands. 

It is the living remnant of a lineage forged in deep time, a story that stretches back more than 30 million years into a world utterly transformed.

For decades, flamingos stood as an evolutionary puzzle — strange in form, stranger still in habit. Their closest relatives were unclear. Then the fossil record began offering clues.

The earliest birds recognizable as flamingo ancestors appear in the Late Eocene to Early Oligocene, a period when the world was cooling and vast salt lakes spread across what is now Europe and North America.

The star of this ancient cast is Palaelodus, a long-legged wader known from deposits in France, Germany, and even North America. Often described as an “unfinished flamingo,” Palaelodus stood tall on slender legs but lacked the extreme bill curvature of modern species.

Paleontologists see it as a sister lineage — a bird halfway between the ancestral stock and the unmistakable modern flamingo form.

Their environments tell the same tale: shallow, alkaline waters rich with diatoms, crustaceans, and blue-green algae. The perfect proving ground for a future flamingo.

By the Miocene, true flamingos had fully arrived. Fossil flamingos — many nearly indistinguishable from modern species — appear in the lakebeds of Spain, Italy, Hungary, and Greece.

Some highlights of Europe’s deep flamingo past include:

  • Phoenicopterus minutus, an elegant early species known from the Late Miocene of Hungary
  • Phoenicopterus gracilis, which stalked ancient Iberian wetlands

Abundant trackways in Miocene lakebeds of Spain, showing flocks wading and foraging as they do today

What’s striking is how little the flamingo body plan has changed. Once their ecological niche crystallized — the brackish shallows, the sieving bill, the social flocking behaviour — evolution held its breath. Flamingos became masters of a lifestyle so successful it needed no further remodeling.

Until recently, the flamingo’s closest living relatives were uncertain. For years, hypotheses bounced between storks, herons, waders, and even waterfowl. Then genetics reshaped the field.

Flamingos are now grouped with grebes in a clade called Mirandornithes.

It’s a pairing that initially seems improbable — one bird is a pink desert ballerina, the other a compact diver of northern lakes. Yet the fossil record supports it: early grebe-like birds and Palaelodus share key skeletal traits, hinting at a common aquatic ancestor before their lineages diverged.

Today the European flamingo thrives in the wetlands of:

  • The Camargue, France
  • Doñana, Spain
  • Sardinia and Sicily
  • The salt pans of Turkey
  • Coastal lagoons of North Africa

Their pink colour, borrowed from carotenoid pigments in their prey, is a living reminder of their deep bond with saline waters. Their massive colonial nests, sculpted from mud into miniature towers, echo the behaviour of flamingos preserved in Miocene fossil beds.

Each bird, elegant and improbable, embodies a lineage honed by climate shifts, vanished lakes, and ancient ancestors who once stepped cautiously through Europe’s long-lost wetlands.

From the lithified sediments of the Oligocene to the shimmering pink flocks drifting across the Mediterranean today, flamingos stand as one of the great evolutionary constants: birds whose story is etched into stone, water, and sunlight.

Sunday, 28 December 2025

FOSSIL FELINES: MOZART

Mister Mozart
Cats—those purring enigmas who act like they invented gravity and disdain—have been perfecting their aloof charm for tens of millions of years. 

Long before domestic life on the couch, they prowled prehistoric forests and savannas, already masters of stealth.

The feline family tree begins about 25 million years ago with the Proailurus, whose name literally means “first cat.” 

This Miocene-era predator lived in Europe and Asia and probably looked like your housecat—if your housecat could take down small deer. 

Proailurus gave rise to the Pseudaelurus, the cat that would eventually split into two great evolutionary lineages: the big cats (Pantherinae, including lions, tigers, and leopards) and the small cats (Felinae, which include your couch companion, Felis catus), and snuggle bunnies like Mister Mozart you see here.

By the Pleistocene, cats had diversified spectacularly—from the legendary Smilodon, the sabre-toothed showstopper of Ice Age fame, to the lithe wildcats that would one day move into our granaries, charm our ancestors, and domesticate us. 

Yes, evidence suggests that around 10,000 years ago, humans didn’t so much tame cats as cats decided that humans were helpful enough to tolerate. A trend that continues to this day. 

Their fossils—sleek jaws, retractable claws, and the occasional pawprint—tell a story of evolutionary precision. Cats didn’t just evolve; they optimised. Every leap, pounce, and inscrutable stare has been honed by millions of years of predatory perfection.

So when your cat knocks your favourite mug off the counter and looks smug about it, remember: you’re gazing into the eyes of a finely tuned Miocene hunter. Evolution, it seems, has a sense of humour—and a soft spot for whiskers.

Kane & Mozart divving up the best bed spots
Despite centuries of cartoon propaganda suggesting otherwise, cats and dogs can form some of the most endearing interspecies friendships in the animal kingdom. 

While their social codes differ—dogs being pack-oriented and demonstrative, cats favouring solitary stealth and subtlety—mutual respect (and occasionally a shared sunny spot or prime position on your bed) often bridges the divide. 

Studies in animal behaviour show that early socialisation, body language recognition, and individual temperament play key roles in fostering harmony between felines and canines. 

A confident cat and a calm, well-socialised dog are a recipe for peaceful coexistence—and sometimes, genuine affection. Watching a cat gently groom a dog’s ears or a Ridgeback stoically endure a kitten’s playful ambush brings a smile to us all. Evolution may have set them on different paths, but friendship, it seems, is a universal instinct.