![]() |
Spinosaurus the Spine Lizard of the Cretaceous |
FOSSIL HUNTRESS
MUSINGS MEANT TO CAPTIVATE, EDUCATE AND INSPIRE

Saturday, 4 October 2025
SPINOSAURUS: BIGGER THAN T-REX. APEX. ALIEN
Friday, 3 October 2025
HAWAI'I: ISLANDS BORN OF FIRE
A vast blue desert stretching farther than the eye could see. But beneath that endless water, far below the waves, the Earth was stirring.
Deep inside our planet lies a restless heart, a molten engine. It churns and pulses, and sometimes, it leaks upward through the skin of the world.
In one special place beneath the Pacific Plate, a hot spot—a plume of heat rising from the mantle—began to melt rock, making it buoyant and eager to break free.
Imagine molten stone, glowing red-orange, pushing upward for thousands of years until—at last—it broke through the ocean floor. The sea hissed and boiled as lava met saltwater. Bit by bit, eruption after eruption, a new land began to rise from the deep. That was the beginning of the Hawai'ian Islands.
But here’s the magic, Hawai'i is not a single island, but a story told in chapters, one after another, spread across millions of years. You see, the Pacific Plate is always moving—slowly, but steadily, like a great raft drifting northwest. The hot spot itself doesn’t move. It’s fixed, like a candle’s flame. So as the plate slides across it, new islands are born in sequence, while the old ones drift away, cooling, eroding, and eventually sinking back beneath the waves.
It’s as though the Earth is sewing a necklace of emeralds and sapphires across the ocean, each island a bead in the chain. Kaua‘i, the eldest, is weathered and softened, its sharp volcanic ridges worn into velvet valleys. O‘ahu, Maui, Moloka‘i—all follow, each younger, each shaped by fire and rain. And finally, the youngest, Hawai‘i Island—often called the Big Island—still burns with creation. Its great volcanoes, Mauna Loa and Kīlauea, continue to pour molten rock into the sea, adding new land even as we speak.
If you were to trace this island chain beneath the waves, you’d find it stretching far, far beyond the horizon. More than 130 undersea volcanoes, some worn down to nothing but lonely seamounts, extend in a long arc that reaches all the way to the Aleutians near Alaska. Together, they form the Hawai'ian–Emperor Seamount Chain—a testament to 80 million years of volcanic storytelling.
But Hawai'i is not just fire—it is also shaped by water and wind. Once the lava cools, the islands begin a second life. Rain falls, carving valleys and canyons. Trade winds sculpt cliffs and carry seeds. Plants take root in the fresh, black soil, and birds bring new life in their feathers. Over time, forests rise where once there was only ash. Coral reefs grow along the shores, ringing the islands in color and light.
Imagine lying back now on a beach of fine sand, still warm from the day’s sun. Behind you, the green slopes of ancient volcanoes rise, and before you, the sea glitters in moonlight. The air smells of salt and flowers, plumeria drifting on the breeze. The very ground beneath you is alive with the heartbeat of the Earth, still creating, still dreaming.
And just like all stories, Hawai'i’s will continue to unfold. South of the Big Island, deep under the ocean, another volcano is already forming. Its name is Lō‘ihi. One day, perhaps tens of thousands of years from now, it will breach the surface, joining the island chain.
Children not yet born will stand on its shores, and perhaps they will listen to stories of how their land came to be—just as you are imagining it now. I know that two of my dear nieces, M & M, are doing just that and I think of them and the beautiful shores they call home.
Thursday, 2 October 2025
WEST COAST WOLVES: ATLA'NAMUX
But their story begins long before that, deep in the fossil record, when canids first began to evolve. The ancestors of today’s wolves can be traced back more than 30 million years to the early canids of the Oligocene.
One of the earliest known members of the dog family is Hesperocyon, a small, fox-like carnivore that lived in what is now North America.
Over millions of years, these early canids diversified into various forms, including the dire wolf (Aenocyon dirus) and the gray wolf (Canis lupus), which appeared around 1 to 2 million years ago.
The gray wolf evolved in Eurasia and migrated into North America via the Bering land bridge during the Pleistocene. Once here, it quickly became a dominant predator across the continent, adapting to a wide range of environments—from the Arctic tundra to the deserts of Mexico.
Today, Canis lupus is still widely distributed across North America, although its range has contracted significantly due to human expansion, habitat loss, and historical persecution. Wolves are found in:
- Alaska – home to the largest populations in North America.
- The Rocky Mountains – including parts of Montana, Idaho, and Wyoming.
- The Western Great Lakes – especially Minnesota and Wisconsin.
- Canada – particularly British Columbia, Alberta, and the boreal forests of the northern provinces.
- Vancouver Island – which hosts a distinct coastal population.
- The Pacific Coast – small populations in Washington and Oregon are making a comeback.
Wolves are apex predators and essential for maintaining healthy ecosystems. They primarily prey on large ungulates such as deer, moose, elk, and caribou.
In coastal regions, particularly on British Columbia’s Central Coast and Vancouver Island, wolves have adapted their diets to include salmon, intertidal invertebrates, and even seals.I have seen them eat their way along the tide line, scavenging whatever the sea has washed up for their breakfasts.
These wolves have been observed swimming between islands in search of food, a behavior rarely seen in inland populations.
If you explore the coast by boat, kayak or other means, you can see their footprints in the sand, telling you that you are not alone as you explore the rugged coast. The best time to try to catch a glimpse of these elusive beauties is early morning, though I did take a late afternoon nap one fine day on the warm sand of Vargus Island and woke to wolf tracks all around me.
Wolves help control herbivore populations, which in turn benefits vegetation and can even influence river systems, as famously demonstrated in Yellowstone National Park after wolves were reintroduced in 1995.
Wolves on Vancouver Island
Vancouver Island is home to a small but resilient population of coastal wolves, often referred to as coastal sea wolves. These wolves are genetically and behaviorally distinct from their inland counterparts. While exact numbers fluctuate, current estimates suggest approximately 350 wolves live on Vancouver Island.
They are elusive and tend to avoid human interaction, making them difficult to study and count accurately. Much of what we know comes from the work of wildlife researchers and photographers such as Ian McAllister, whose documentation of coastal wolf behavior has been instrumental in raising awareness.
If you are looking to see more of these coastal predators, search out the work of photographers like Liron Gertsman, Ian Harland, and Sandy Sharkey, who have captured stunning images and footage of these elusive creatures in their natural habitat, along our beaches and old-growth forests.
Despite their adaptability, wolves face a number of threats:
- Habitat Loss and Human Encroachment: As logging and development continue to fragment wild areas on Vancouver Island, wolves are pushed into closer proximity with humans, increasing the likelihood of conflict.
- Hunting and Trapping: Wolves are not protected under the Wildlife Act in much of British Columbia and can be hunted or trapped in many areas. Although controversial, some view wolf control as a means to support ungulate populations for hunting.
- Poisoning and Culling: In parts of Canada, wolves have been poisoned or culled in misguided efforts to protect caribou herds, despite ecological evidence showing that habitat preservation is more critical to caribou survival.
- Decline in Prey: As deer populations fluctuate due to climate change, human hunting pressure, and habitat alteration, wolves may face food scarcity.
- Public Misunderstanding: Myths and negative stereotypes about wolves still persist, sometimes fueling unnecessary fear and policy decisions not based on science.
- Wolves have been on this land longer than humans. Their long evolutionary journey has shaped them into highly specialized, intelligent animals with complex social structures. But their survival now depends on us.
On Vancouver Island and across the continent, conservation efforts, education, and science-based wildlife management are essential to ensuring wolves continue to howl in the wild for generations to come.
Vancouver Island local, Gary Allan, who runs the SWELL Wolf Education Centre in Nanaimo and is known for his extensive work in wolf advocacy and education is a good resource of up-to-date information on our coastal wolves.
He has been educating the public about wolves since 2006, both through the Tundra Speaks Society and the education centre. Allan's work involves interacting with wolves, including his wolf-dog Tundra, and sharing his knowledge with schools, community groups, and First Nations organizations.
Have you seen one of our coastal wolves up close and in person? It is a rare treat and for me, generally on an early morning walk. I hope we keep the balance so that the wolves live in peace and continue to thrive.
Further Reading and Resources
McAllister, Ian. The Last Wild Wolves: Ghosts of the Rain Forest. Greystone Books, 2007.
Mech, L. David, and Boitani, Luigi (eds.). Wolves: Behavior, Ecology, and Conservation. University of Chicago Press, 2003.
Fossil Canids Database – University of California Museum of Paleontology
Raincoast Conservation Foundation – https://www.raincoast.org
Wednesday, 1 October 2025
GRACEFUL, GLIMMERING ACROBATS OF THE SKIES: DRAGONFLIES
- Anisoptera – what we now call true dragonflies
- Zygoptera – damselflies, their more delicate cousins
- Germany’s Solnhofen Limestone (Late Jurassic) with its remarkable preservation
- China’s Liaoning Province (Early Cretaceous)
- Montana and Colorado, USA (Late Cretaceous to Paleogene)
Tuesday, 30 September 2025
TRICERATOPS: HORNED GIANT OF THE LATE CRETACEOUS
The air hums with insects, dragonflies dart over shallow pools, and cicada-like calls echo through the dense stands of magnolias and cycads.
A herd of Triceratops horridus moves slowly across the open landscape, their massive, parrot-like beaks tearing into low-growing ferns and palm fronds. Each step sinks slightly into the damp soil, leaving broad three-toed tracks.
The ground vibrates with the low, resonant bellows they use to keep in contact with one another, a chorus of sound that carries across the plain.
You might catch glimpses of other giants sharing the same world. Herds of hadrosaurs—Edmontosaurus—graze nearby, their duck-billed snouts sweeping back and forth through the vegetation like living lawnmowers.
Overhead, toothed seabirds wheel and cry, their calls mixing with the shrieks of distant pterosaurs. And lurking at the edges of the scene, half-hidden among the trees, the apex predator Tyrannosaurus rex waits, its presence felt more than seen, a reminder that this landscape is ruled by both plant-eaters and their formidable hunters.
Triceratops was one of the last and largest ceratopsians, measuring up to 9 meters (30 feet) long and weighing as much as 12 metric tons. Its most iconic features were the three horns—two long brow horns above the eyes and a shorter horn on the nose—backed by a broad bony frill. These structures were likely used for defense against predators like T. rex, but also for display within their own species, signaling dominance, maturity, or readiness to mate.
Its beak and shearing dental batteries made Triceratops a highly efficient plant-eater. Unlike many earlier ceratopsians, it possessed hundreds of teeth stacked in dental batteries, capable of slicing through tough, fibrous plants like cycads and palms that flourished in the Late Cretaceous.
Triceratops lived at the very end of the Cretaceous, in what is now western North America, within the region known as Laramidia, a long island continent separated from eastern North America by the Western Interior Seaway.
Alongside Triceratops, this ecosystem hosted a staggering diversity of dinosaurs, including ankylosaurs (like Ankylosaurus magniventris), duck-billed hadrosaurs, pachycephalosaurs, and smaller predators like Dakotaraptor. Crocodilians, turtles, and mammals also thrived in the wetlands and forests.
Fossil evidence suggests that Triceratops may have lived in herds, though adults are often found alone, hinting at possible solitary behavior outside of mating or nesting seasons. Juveniles, on the other hand, may have grouped together for protection.
Triceratops was among the very last non-avian dinosaurs before the mass extinction event at the Cretaceous–Paleogene (K–Pg) boundary, 66 million years ago. Their fossils are found in the uppermost layers of the Hell Creek Formation, placing them just before the asteroid impact that ended the Mesozoic. Triceratops mark the end of an era, as it were, representing both the culmination of ceratopsian evolution and the twilight of the age of dinosaurs.
Today, Triceratops remains one of the most recognizable dinosaurs in the world and a personal fav—its horns and frill embodying the strange beauty and raw power of prehistoric life. Standing face-to-face with a Triceratops skeleton in a museum is awe-inspiring, but to truly imagine them alive, you must step back into their world: warm floodplains, buzzing insects, herds of plant-eaters, and the constant tension of predators in the shadows.
Monday, 29 September 2025
MARINE PREDATOR OF THE DEEP: BLUE LIAS ICHTHYOSAUR
![]() |
Ichthyosaur Vertebrae found by Lewis Winchester-Ellis |
The find includes stomach contents which tell us a little about how this particular fellow liked to dine.
As with most of his brethren, he enjoyed fish and cephalopods. Lewis found fishbone and squid tentacle hooklets in his belly.
Ichthyosaurus was an extinct marine reptile first described from fossil fragments found in 1699 in Wales. Shortly thereafter, fossil vertebrae were published in 1708 from the Lower Jurassic and the first member of the order Ichthyosauria to be discovered.
To give that a bit of historical significance, this was the age of James Stuart, Jacobite hopeful to the British throne. While scientific journals of the day were publishing the first vertebrae ichthyosaur finds, he was avoiding the French fleet in the Firth of Forth off Scotland. This wasn’t Bonnie Prince Charlie, this was his Dad. Yes, that far back.
The first complete skeleton was discovered in the early 19th century by Mary Anning and her brother Joseph along the Dorset Jurassic Coast. Joseph had mistakenly, but quite reasonably, taken the find for an ancient crocodile. Mary excavated the specimen a year later and it was this and others that she found that would supply the research base others would soon publish on.
Mary's find was described by a British surgeon, Sir Everard Home, an elected Fellow of the Royal Society, in 1814. The specimen is now on display at the Natural History Museum in London bearing the name Temnodontosaurus platyodon, or “cutting-tooth lizard.”
![]() |
Ichthyosaurus communis |
Rev. William Buckland would go on to describe two small ichthyosaurs from the Lias of Lyme Regis, Ichthyosaurus communis and Ichthyosaurus intermedius, in 1837.
Remarkable, you'll recall that he was a theologian, geologist, palaeontologist AND Dean of Westminster.
The Age of Dinosaurs and Era of the Mighty Marine Reptile had begun.
Ichthyosaurs have been collected in the Blue Lias near Lyme Regis and the Black Ven Marls. More recently, specimens have been collected from the higher succession near Seatown. Paddy Howe, Lyme Regis Museum geologist, found a rather nice Ichthyosaurus breviceps skull a few years back. A landslip in 2008 unveiled some ribs poking out of the Church cliffs and a bit of digging revealed the ninth fossil skull ever found of a breviceps, with teeth and paddles to boot.
Specimens have since been found in Europe in Belgium, England, Germany, Switzerland and in Indonesia. Many tremendously well-preserved specimens come from the limestone quarries in Holzmaden, southern Germany.
Ichthyosaurs ranged from quite small, just a foot or two, to well over twenty-six metres in length and resembled both modern fish and dolphins.
Dean Lomax and Sven Sachs, both active (and delightful) vertebrate paleontologists, have described a colossal beast, Shonisaurus sikanniensis from the Upper Triassic (Norian) Pardonet Formation of northeastern British Columbia, Canada, measuring 3-3.5 meters in length. The specimen is now on display in the Royal Tyrrell Museum of Palaeontology in Alberta, Canada. It was this discovery that tipped the balance in the vote, making it British Columbia's Official Fossil. Ichthyosaurs have been found at other sites in British Columbia, on Vancouver Island and the Queen Charlotte Islands (Haida Gwaii) but Shoni tipped the ballot.
The first specimens of Shonisaurus were found in the 1990s by Peter Langham at Doniford Bay on the Somerset coast of England.
Dr. Betsy Nicholls, Rolex Laureate Vertebrate Palaeontologist from the Royal Tyrrell Museum, excavated the type specimen of Shonisaurus sikanniensis over three field sessions in one of the most ambitious fossil excavations ever ventured. Her efforts from 1999 through 2001, both in the field and lobbying back at home, paid off. Betsy published on this new species in 2004, the culmination of her life’s work and her last paper as we lost her to cancer in autumn of that year.
![]() |
Roy Chapman Andrews, AMNH 1928 Expedition to the Gobi Desert |
We've found at least 37 specimens of Shonisaurus in Triassic outcrops of the Luning Formation in the Shoshone Mountains of Nevada, USA. The finds go back to the 1920s. The specimens that may it to publication were collected by M. Wheat and C. L. Camp in the 1950s. The aptly named Shonisaurus popularis became the Nevada State Fossil in 1984. Our Shoni got around. Isolated remains have been found in a section of sandstone in Belluno, in the Eastern Dolomites, Veneto region of northeastern Italy. The specimens were published by Vecchia et al. in 2002.
For a time, Shonisaurus was the largest ichthyosaurus known.
Move over, Shoni, as a new marine reptile find competes with the Green Anaconda (Eunectes murinus) and the Blue Whale (Balaenoptera musculus) for size at a whopping twenty-six (26) metres.
The find is the prize of fossil collector turned co-author, Paul de la Salle, who (you guessed it) found it in the lower part of the intertidal area that outcrops strata from the latest Triassic Westbury Mudstone Formation of Lilstock on the Somerset coast. He contacted Dean Lomax and Judy Massare who became co-authors on the paper.
The find and conclusions from their paper put "dinosaur" bones from the historic Westbury Mudstone Formation of Aust Cliff, Gloucestershire, UK site into full reinterpretation.
And remember that ichthyosaur the good Reverend Buckland described back in 1837, the Ichthyosaurus communis? Dean Lomax was the first to describe a wee baby. A wee baby ichthyosaur! Awe. I know, right? He and paleontologist Nigel Larkin published this adorable first in the journal of Historical Biology in 2017.
They had teamed up previously on another first back in 2014 when they completed the reconstruction of an entire large marine reptile skull and mandible in 3-D, then graciously making it available to fellow researchers and the public.
Another superb 3-D ichthyosaur skull was found near Lyme Regis by fossil hunter-turned-entrepreneur-local David Sole and prepped by the late David Costain. I'm rather hoping it went into a museum collection as it would be wonderful to see the specimen studied, imaged, scanned and 3-D printed for all to share. Here's hoping.
![]() | ||
Ichthyosaurus somersetensis Credit: Dean R Lomax |
Their paper in the ACTA Palaeontologica Polonica from 2017, describes the third embryo known for Ichthyosaurus and the first to be positively identified to species level. The specimen was collected from Lower Jurassic strata (lower Hettangian, Blue Lias Formation) of Doniford Bay, Somerset, UK and is housed in the collection of the Niedersächsisches Landesmuseum (Lower Saxony State Museum) in Hannover, Germany.
We have learned a lot about them in the time we've been studying them. We now have thousands of specimens, some whole, some as bits and pieces. Many specimens that have been collected are only just now being studied and the tools we are using to study them are getting better and better.
Link to Lomax Paper: https://journals.plos.org/plosone/article…
Link to Nathan's Paper: https://www.tandfonline.com/…/10.1080/03115518.2018.1523462…
Nicholls Paper: E. L. Nicholls and M. Manabe. 2004. Giant ichthyosaurs of the Triassic - a new species of Shonisaurus from the Pardonet Formation (Norian: Late Triassic) of British Columbia. Journal of Vertebrate Paleontology 24(4):838-849 [M. Carrano/H. Street]
Sunday, 28 September 2025
STEGOSAURUS: PLATED GIANT OF THE JURASSIC
Fossils of Stegosaurus have been found primarily in the Morrison Formation, a magnificent rock unit famous for preserving one of the most diverse dinosaur ecosystems ever discovered.
Stegosaurus could reach up to 9 meters (30 feet) in length but had a disproportionately small head with a brain roughly the size of a walnut.
Despite this, it thrived as a low-browser, feeding on ferns, cycads, and other ground-level plants using its beak-like mouth and peg-shaped teeth. Its most iconic features were the dermal plates, some nearly a meter tall, running down its back. Their function remains debated—some have proposed they were used for display, species recognition, or thermoregulation.
At the end of its tail, Stegosaurus bore four long spikes, known as the thagomizer.Stegosaurus did not live in isolation. It shared its world with a cast of iconic dinosaurs and other ancient animals:
- Sauropods such as Apatosaurus, Diplodocus, and Brachiosaurus dominated the floodplains, their long necks sweeping across the tree canopy.
- Predators like Allosaurus and Ceratosaurus stalked the ecosystem, preying on herbivores. The spikes of Stegosaurus would have been a key defense against these hunters.
- Ornithopods, including Camptosaurus and Dryosaurus, grazed alongside Stegosaurus, representing smaller, quicker plant-eaters.
- Early mammals, small and shrew-like, scurried through the underbrush, while flying pterosaurs soared overhead.
- Freshwater systems hosted fish, turtles, and crocodile relatives, rounding out the ecosystem.
Interesting Facts
- The brain-to-body ratio of Stegosaurus is one of the smallest of any dinosaur, fueling the myth that it had a “second brain” in its hips—an idea no longer supported by science.
- Tracks attributed to stegosaurs suggest they may have moved in small groups, possibly for protection.
- Despite its fearsome appearance, Stegosaurus was strictly an herbivore. Its teeth were too weak to chew tough vegetation, meaning it likely swallowed food in large chunks.
- And, being one of my best loved dinosaurs, I chose Stegosaurus as one of my logos for the Fossil Huntress. This gentle giant is one of my all time favourites!
Saturday, 27 September 2025
A DAY IN THE LIFE OF A HADROSAUR
![]() |
Glorious Parasaurolophus art work by Daniel Eskridge |
Sunlight filters through the canopy of towering conifers, catching the mist in golden rays that dance across the forest floor.
In the dappled light, a herd of Edmontosaurus—duck-billed hadrosaurs—trundle slowly along the muddy bank. Their broad, flattened snouts graze the lush vegetation as they move, leaves crunching softly underfoot.
Occasionally, one lifts its head, nostrils flaring as it senses the faint rustle of small mammals or the distant call of a Troodon hunting nearby. The low, resonant calls of the herd echo through the valley—a combination of hums, grunts, and whistling notes, a complex social language that signals alertness or contentment.
Around the herd, the world teems with life. Tiny lizards dart among fallen logs. Feathered dinosaurs like Caudipteryx flit through the branches, their wings rustling against the leaves. In the sky, pterosaurs wheel silently, shadowing the riverbanks, while fish occasionally leap from the water, disturbing the mirrored surface.
A Tyrannosaurus stalks at a distance, its presence felt more than seen, tension rippling through the herd as they lift their heads in unison, scanning the forest edge. Yet for now, they continue to feed, grazing on conifers, ferns, and flowering plants, their broad dental batteries efficiently shearing tough plant material.
As the sun climbs higher, the herd’s rhythm shifts. Juveniles cluster together near the center of the group, protected by adults forming a loose perimeter. Mothers communicate constantly with low-frequency hums that travel through the ground, letting their young know it is safe to graze. Each hadrosaur maintains a personal space, yet the herd moves as a fluid unit, coordinated by sight, sound, and subtle gestures.
Occasionally, two adults nuzzle briefly or bump heads—a gentle reinforcement of social bonds within the herd.
By midday, the river becomes a focal point. Hadrosaurs wade into shallow water, stirring the mud with their broad feet, creating a chorus of splashes and grunts. The water’s surface reflects the glittering canopy above, disturbed only by the occasional leap of fish or the landing of a pterosaur.
Here, the herd drinks, cools down, and reorients itself to the sun’s angle. Younglings playfully chase each other through the shallows, their calls mingling with the rhythmic lapping of water. Predators lurk nearby, and the herd’s vigilance never wavers—any unusual sound or movement triggers a wave of alert postures, heads lifting in unison, tails flicking nervously.
As afternoon wanes, the herd moves toward forested areas, seeking shade. The scent of resin from conifers mingles with the damp earth, masking the smell of predators. The larger adults lead, while subadults and juveniles follow, practicing the complex patterns of herd movement they will rely on for survival.
The subtle vibrational signals—footsteps, tail swishes, body shifts—help coordinate the group over distances that the eyes alone cannot manage. Within these social structures, older hadrosaurs seem to guide the young, showing where the most nutritious plants grow and signaling which areas are safe.
By evening, the forest becomes alive with nocturnal creatures. Crickets and insects add a constant hum to the air, while small mammals rustle in the underbrush. The herd settles in a sheltered clearing, forming protective clusters.Some adults lower themselves to rest, heads tucked under broad forelimbs, while juveniles huddle close, still vocalizing softly, practicing the calls they will use to communicate when they reach adulthood.
The sounds of the night—rustling leaves, distant predator calls, and the gentle low-frequency hums of the hadrosaurs—create a layered, symphonic soundscape of life at the end of a Cretaceous day.
The world of hadrosaurs was far from solitary—their forests, riverbanks, and floodplains teemed with life, forming a complex and interconnected ecosystem. While the herd grazed, the air vibrated with the calls of feathered dinosaurs like Microraptor flitting between branches, occasionally diving to snatch insects from the foliage. Small mammals—ancestors of shrews and multituberculates—scuttled across the forest floor, their tiny claws stirring the moss and fallen leaves.
Predators lurked at every edge. Tyrannosaurus and Albertosaurus prowled open plains and forest margins, stalking both hadrosaurs and smaller herbivores. Juvenile hadrosaurs, particularly vulnerable, relied on the protective circle of adults, whose heads, tails, and bodies created a living barrier. Even crocodilians patrolled the rivers, their eyes breaking the water’s surface as they waited for an unwary hadrosaur to drink or bathe.
But the landscape was not only danger and vigilance. Insects buzzed among flowering angiosperms, pollinating as they fed, while dragonfly-like odonates skimmed over ponds and streams. Frogs croaked from the damp undergrowth, adding a pulsing rhythm to the daily soundscape. Trees, ferns, and cycads provided more than food; their dense canopies offered shelter from predators and sun, while fallen logs and leaf litter created microhabitats for countless invertebrates.
Seasonal changes added another layer of complexity. During rainy months, riverbanks became muddy feeding grounds, leaving tracks that we find and study today.
In drier periods, herds migrated across plains and valleys, guided by the scent of water and fresh vegetation. The interplay of predators, prey, plants, and smaller animals created a dynamic, constantly shifting stage where survival depended on vigilance, cooperation, and adaptability.
Through fossil evidence—trackways, bone beds, and stomach content analysis—we can reconstruct this rich tapestry. Imagining the sensory richness: the smell of resin and damp soil, the low hum of a herd communicating, the distant roar of predators, and the flash of feathered wings overhead, gives life to a world that has been silent for 66 million years.
In that world, hadrosaurs were central actors in a vibrant, thriving ecosystem. Hadrosaurs were not solitary wanderers but highly social beings, capable of complex communication, coordinated group behavior, and protective care of their young.
The hadrosaurs you see in this post are Parasaurolophus — one of the last of the duckbills to roam the Earth and their great crests were the original trumpets. We now know that their bizarre head adornments help them produce a low B-Flat or Bb. This is the same B-Flat you hear wind ensembles tune to with the help of their tuba, horn or clarinet players.
I imagine them signaling to the troops with their trumpeting sound carried on the winds similar to the bugle-horn call of an elephant.
Imagining a day in their life—from morning grazing along rivers to evening rest in the forest—reveals the richness of their world, teeming with interactions and sensory experiences that echo across millions of years.
For those that love paleo art, check out the work of Daniel Eskridge (shared with permission here) to see more of his work and purchase some to bring into your world by visiting:https://daniel-eskridge.pixels.com/
Friday, 26 September 2025
WARRIOR CRABS: KU'MIS
Look how epic this little guy is!
He is a crab — and if you asked him, the fiercest warrior that ever lived. While that may not be strictly true, crabs do have the heart of a warrior and will raise their claws, sometimes only millimetres into the air, to assert dominance over their world.
Crabs are decapod crustaceans of the Phylum Arthropoda.Crabs build their shells from highly mineralized chitin — and chitin gets around. It is the main structural component of the exoskeletons of many of our crustacean and insect friends. Shrimp, crab, and lobster all use it to build their exoskeletons.
Chitin is a polysaccharide — a large molecule made of many smaller monosaccharides or simple sugars, like glucose.
It is handy stuff, forming crystalline nanofibrils or whiskers. Chitin is actually the second most abundant polysaccharide after cellulose. It is interesting as we usually think of these molecules in the context of their sugary context but they build many other very useful things in nature — not the least of these are the hard shells or exoskeletons of our crustacean friends.
Crabs in the Fossil Record
The earliest unambiguous crab fossils date from the Early Jurassic, with the oldest being Eocarcinus from the early Pliensbachian of Britain, which likely represents a stem-group lineage, as it lacks several key morphological features that define modern crabs.
Most Jurassic crabs are only known from dorsal — or top half of the body — carapaces, making it difficult to determine their relationships. Crabs radiated in the Late Jurassic, corresponding with an increase in reef habitats, though they would decline at the end of the Jurassic as the result of the decline of reef ecosystems. Crabs increased in diversity through the Cretaceous and represented the dominant group of decapods by the end.
We find wonderful fossil crab specimens on Vancouver Island. The first I ever collected was at Shelter Point, then again on Hornby Island, down on the Olympic Peninsula and along Vancouver Island's west coast near Nootka Sound. They are, of course, found globally and are one of the most pleasing fossils to find and aggravating to prep of all the specimens you will ever have in your collection. Bless them.
Thursday, 25 September 2025
LIVING FOSSILS: METASEQUOIA
![]() |
Dawn Redwood Cones with scales paired in opposite rows |
The seed-bearing cones of Metasequoia have a stalk at their base and the scales are arranged in paired opposite rows which you can see quite well in the visual above. Coast redwood cone scales are arranged in a spiral and lack a stalk at their base.
Although the least tall of the redwoods, it grows to an impressive sixty meters (200 feet) in height. It is sometimes called Shui-sa, or water fir by those who live in the secluded mountainous region of China where it was rediscovered.
![]() |
Fossil Metasequoia, McAbee Fossil Beds |
During the Paleocene and Eocene, extensive forests of Metasequoia thrived as far north as Strathcona Fiord on Ellesmere Island and sites on Axel Heiberg Island in Canada's far north around 80° N latitude.
We find lovely examples of Metasequoia occidentalis in the Eocene outcrops at McAbee near Cache Creek, British Columbia, Canada. I shared a photo here of one of those specimens. Once this piece dries out a bit, I will take a dental pick to it to reveal some of the teaser fossils peeking out.
The McAbee Fossil Beds are known for their incredible abundance, diversity and quality of fossils including lovely plant, insect and fish species that lived in an old lake bed setting. While the Metasequoia and other fossils found here are 52-53 million years old, the genus is much older. It is quite remarkable that both their fossil and extant lineage were discovered in just a few years of one another.
Metasequoia was first described as a new genus from a fossil specimen found in 1939 and published by Japanese paleobotanist Shigeru Miki in 1941. Remarkably, the living version of this new genus was discovered later that same year.
Professor Zhan Wang, an official from the Bureau of Forest Research was recovering from malaria at an old school chum's home in central China. His friend told him of a stand of trees discovered in the winter of 1941 by Chinese botanist Toh Gan (干铎). The trees were not far away from where they were staying and Gan's winter visit meant he did not collect any specimen as the trees had lost their leaves.
The locals called the trees Shui-sa, or water fir. As trees go, they were reportedly quite impressive with some growing as much as sixty feet tall. Wang was excited by the possibility of finding a new species and asked his friend to describe the trees and their needles in detail. Emboldened by the tale, Wang set off through the remote mountains to search for his mysterious trees and found them deep in the heart of Modaoxi (磨刀溪; now renamed Moudao (谋道), in Lichuan County, in the central China province of Hubei. He found the trees and was able to collect living specimens but initially thought they were from Glyptostrobus pensilis (水松).
A few years later, Wang showed the trees to botanist Wan-Chun Cheng and learned that these were not the leaves of s Glyptostrobus pensilis (水松 ) but belonged to a new species.
While the find was exciting, it was overshadowed by China's ongoing conflict with the Japanese that was continuing to escalate. With war at hand, Wang's research funding and science focus needed to be set aside for another two years as he fled the bombing of Beijing.
When you live in a world without war on home soil it is easy to forget the realities for those who grew up in it.Zhan Wang and his family lived to witness the 1931 invasion of Manchuria, then the 1937 clash between Chinese and Japanese troops at the Marco Polo Bridge, just outside Beijing.
That clash sparked an all-out war that would grow in ferocity to become World War II.
Within a year, the Chinese military situation was dire. Most of eastern China lay in Japanese hands: Shanghai, Nanjing, Beijing, Wuhan. As the Japanese advanced, they left a devastated population in their path where atrocity after atrocity was the norm. Many outside observers assumed that China could not hold out, and the most likely scenario was a Japanese victory over China.
Yet the Chinese hung on, and after the horrors of Pearl Harbor, the war became genuinely global. The western Allies and China were now united in their war against Japan, a conflict that would finally end on September 2, 1945, after Allied naval forces blockaded Japan and subjected the island nation to intensive bombing, including the utter devastation that was the Enola Gay's atomic payload over Hiroshima.
With World War II behind them, the Chinese researchers were able to re-focus their energies on the sciences. Sadly, Wang was not able to join them. Instead, two of his colleagues, Wan Chun Cheng and Hu Hsen Hsu, the director of Fan Memorial Institute of Biology would continue the work. Wan-Chun Cheng sent specimens to Hu Hsen Hsu and upon examination realised they were the living version of the trees Miki had published upon in 1941.
Hu and Cheng published a paper describing a new living species of Metasequoia in May 1948 in the Bulletin of Fan Memorial Institute of Biology.
That same year, Arnold Arboretum of Harvard University sent an expedition to collect seeds and, soon after, seedling trees were distributed to various universities and arboreta worldwide.
Today, Metasequoia grow around the globe. When I see them, I think of Wang and all he went through. He survived the conflict and went on to teach other bright, young minds about the bountiful flora in China. I think of Wan Chun Cheng collaborating with Hu Hsen Hsu in a time of war and of Hu keeping up to date on scientific research, even published works from colleagues from countries with whom his country was at war. Deep in my belly, I ache for the huge cost to science, research and all the species impacted on the planet from our human conflicts. Each year in April, I plant more Metasequoia to celebrate Earth Day and all that means for every living thing on this big blue orb.
References:
- https://web.stanford.edu/group/humbioresearch/cgi-bin/wordpress/?p=297
- https://humboldtredwoods.org/redwoods
Wednesday, 24 September 2025
LOWER LIAS LYTOCERAS AMMONITE
![]() |
Lytoceras sp. Photo: Craig Chivers |
![]() |
The concretion prior to prep |
Sunday, 21 September 2025
SEA OTTERS: PLAYFUL TUMBLERS IN KELP
With shells for drums and sunlight for spotlight, they turn survival into play, joy into power. Tiny jesters of the ocean, yet fierce enough to hold an entire ecosystem in their grasp.
Sea otters (Enhydra lutris) are more than just charismatic charmers of the Pacific Coast; they are living links to an ancient evolutionary journey. Their playful demeanor hides a lineage that stretches back millions of years, into a fossil record that tells a story of transformation from river to sea.
The tale begins with their ancestors in the family Mustelidae—the same diverse group that gave us weasels, badgers, martens, and wolverines. The earliest otter-like mustelids appeared around 18 million years ago in the Miocene. Among them was Enhydriodon, a giant otter that roamed rivers and wetlands of Eurasia and Africa, weighing over 200 pounds—far larger than today’s sea otters.
By the late Miocene to early Pliocene, otter evolution was branching out. Fossils of Enhydra, the direct ancestor of modern sea otters, show up in the North Pacific around 5 million years ago. Unlike their freshwater kin, these otters were already well adapted to marine life: short, robust limbs for swimming, strong jaws for crushing mollusks, and teeth built for a diet of hard-shelled prey.
By the Pleistocene (2.6 million to 11,700 years ago), sea otters had fully taken to the sea. They developed one of nature’s thickest pelts—up to a million hairs per square inch—allowing them to survive frigid northern waters without relying on the blubber used by seals and whales. Fossil remains and genetic studies suggest that their range was once broader than it is today, extending along vast stretches of the North Pacific Rim.
These adaptations made sea otters not only survivors but keystone species. By preying on sea urchins, they keep kelp forests thriving, shaping entire marine ecosystems with their appetites. Without them, underwater forests collapse into barren urchin wastelands. With them, the kelp sways tall and green, sheltering fish, seabirds, and countless invertebrates.
It is a joy to watch them crack open a clam on its belly or twirl through kelp in a flurry of bubbles.From Miocene rivers to Pleistocene shores, for me sea otters embody resilience and adaptation, carrying forward the legacy of their fossil kin.
Sea otters are tender and attentive parents, especially the mothers who cradle their pups on their bellies as they float in the swells.
A newborn pup’s fur is so dense and buoyant that it cannot dive, so the mother becomes both raft and refuge.
She grooms the pup constantly, blowing air into its coat to keep it dry and warm, and when she needs to forage, she may wrap her young in strands of kelp to keep it from drifting away.
This intimate bond, played out on the rolling surface of the sea, is one of the most endearing sights in the animal kingdom—proof that even in the wild’s ceaseless struggle for survival, tenderness finds its place.
We call these playful relatives, ḵ̓asa, in Kwak'wala, the language of the Kwakwakaʼwakw (those who speak Kwak'wala), First Nations along the Pacific Northwest Coast.
Saturday, 20 September 2025
NOOTKA: FOSSILS AND FIRST NATIONS HISTORY
![]() |
Nootka Fossil Field Trip. Photo: John Fam |
Just off the shores of Vancouver Island, east of Gold River and south of Tahsis is the picturesque and remote Nootka Island.
This is the land of the proud and thriving Nuu-chah-nulth First Nations who have lived here always.
Always is a long time, but we know from oral history and archaeological evidence that the Mowachaht and Muchalaht peoples lived here, along with many others, for many thousands of years — a time span much like always.
While we know this area as Nootka Sound and the land we explore for fossils as Nootka Island, these names stem from a wee misunderstanding.
Just four years after the 1774 visit by Spanish explorer Juan Pérez — and only a year before the Spanish established a military and fur trading post on the site of Yuquot — the Nuu-chah-nulth met the Englishman, James Cook.
Captain Cook sailed to the village of Yuquot just west of Vancouver Island to a very warm welcome. He and his crew stayed on for a month of storytelling, trading and ship repairs. Friendly, but not familiar with the local language, he misunderstood the name for both the people and land to be Nootka. In actual fact, Nootka means, go around, go around.
Two hundred years later, in 1978, the Nuu-chah-nulth chose the collective term Nuu-chah-nulth — nuučaan̓uł, meaning all along the mountains and sea or along the outside (of Vancouver Island) — to describe themselves.It is a term now used to describe several First Nations people living along western Vancouver Island, British Columbia.
It is similar in a way to the use of the United Kingdom to refer to the lands of England, Scotland and Wales — though using United Kingdom-ers would be odd. Bless the Nuu-chah-nulth for their grace in choosing this collective name.
An older term for this group of peoples was Aht, which means people in their language and is a component in all the names of their subgroups, and of some locations — Yuquot, Mowachaht, Kyuquot, Opitsaht. While collectively, they are the Nuu-chah-nulth, be interested in their more regional name should you meet them.
But why does it matter? If you have ever mistakenly referred to someone from New Zealand as an Aussie or someone from Scotland as English, you have likely been schooled by an immediate — sometimes forceful, sometimes gracious — correction of your ways. The best answer to why it matters is because it matters.
Each of the subgroups of the Nuu-chah-nulth viewed their lands and seasonal migration within them (though not outside of them) from a viewpoint of inside and outside. Kla'a or outside is the term for their coastal environment and hilstis for their inside or inland environment.
It is to their kla'a that I was most keen to explore. Here, the lovely Late Eocene and Early Miocene exposures offer up fossil crab, mostly the species Raninid, along with fossil gastropods, bivalves, pine cones and spectacularly — a singular seed pod. These wonderfully preserved specimens are found in concretion along the foreshore where time and tide erode them out each year.
Five years after Spanish explorer Juan Pérez's first visit, the Spanish built and maintained a military post at Yuquot where they tore down the local houses to build their own structures and set up what would become a significant fur trade port for the Northwest Coast — with the local Chief Maquinna's blessing and his warriors acting as middlemen to other First Nations.
Following reports of Cook's exploration British traders began to use the harbour of Nootka (Friendly Cove) as a base for a promising trade with China in sea-otter pelts but became embroiled with the Spanish who claimed (albeit erroneously) sovereignty over the Pacific Ocean.
![]() |
Dan Bowen searching an outcrop. Photo: John Fam |
George Vancouver on his subsequent exploration in 1792 circumnavigated the island and charted much of the coastline. His meeting with the Spanish captain Bodega y Quadra at Nootka was friendly but did not accomplish the expected formal ceding of land by the Spanish to the British.
It resulted however in his vain naming the island "Vancouver and Quadra." The Spanish captain's name was later dropped and given to the island on the east side of Discovery Strait. Again, another vain and unearned title that persists to this day.
Early settlement of the island was carried out mainly under the sponsorship of the Hudson's Bay Company whose lease from the Crown amounted to 7 shillings per year — that's roughly equal to £100.00 or $174 CDN today. Victoria, the capital of British Columbia, was founded in 1843 as Fort Victoria on the southern end of Vancouver Island by the Hudson's Bay Company's Chief Factor, Sir James Douglas.
With Douglas's help, the Hudson's Bay Company established Fort Rupert on the north end of Vancouver Island in 1849. Both became centres of fur trade and trade between First Nations and solidified the Hudson's Bay Company's trading monopoly in the Pacific Northwest.The settlement of Fort Victoria on the southern tip of Vancouver Island — handily south of the 49th parallel — greatly aided British negotiators to retain all of the islands when a line was finally set to mark the northern boundary of the United States with the signing of the Oregon Boundary Treaty of 1846. Vancouver Island became a separate British colony in 1858. British Columbia, exclusive of the island, was made a colony in 1858 and in 1866 the two colonies were joined into one — becoming a province of Canada in 1871 with Victoria as the capital.
Dan Bowen, Chair of the Vancouver Island Palaeontological Society (VIPS) did a truly splendid talk on the Fossils of Nootka Sound. With his permission, I have uploaded the talk to the ARCHEA YouTube Channel for all to enjoy. Do take a boo, he is a great presenter. Dan also graciously provided the photos you see here. The last of the photos you see here is from the August 2021 Nootka Fossil Field Trip. Photo: John Fam, Vice-Chair, Vancouver Paleontological Society (VanPS).
Know Before You Go — Nootka Trail
The Nootka Trail passes through the traditional lands of the Mowachaht/Muchalat First Nations who have lived here since always. They share this area with humpback and Gray whales, orcas, seals, sea lions, black bears, wolves, cougars, eagles, ravens, sea birds, river otters, insects and the many colourful intertidal creatures that you'll want to photograph.
This is a remote West Coast wilderness experience. Getting to Nootka Island requires some planning as you'll need to take a seaplane or water taxi to reach the trailhead. The trail takes 4-8 days to cover the 37 km year-round hike. The peak season is July to September. Permits are not required for the hike.
Access via: Air Nootka floatplane, water taxi, or MV Uchuck III
- Dan Bowen, VIPS on the Fossils of Nootka: https://youtu.be/rsewBFztxSY
- https://www.thecanadianencyclopedia.ca/en/article/sir-james-douglas
- file:///C:/Users/tosca/Downloads/186162-Article%20Text-199217-1-10-20151106.pdf
- Nootka Trip Planning: https://mbguiding.ca/nootka-trail-nootka-island/#overview